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Shallow water wave generation by unsteady flow 
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Mathematics Department, Imperial College, London 

(Received 3 October 1967) 

Small amplitude waves on a shallow layer of water are studied from the point 
of view used in aerodynamic sound theory. It is shown that many aspects of the 
generation and propagation of water waves are similar to those of sound waves 
in air. Certain differences are also discussed. It is concluded that shallow water 
simulation can be employed in the study of some aspects of aerodynamically 
generated sound. 

1. Introduction 
The theory of aerodynamic sound initiated by Lighthill is built upon the equa- 

tions of mass and momentum conservation. These yield a three-dimensional 
wave equation which describes the generation and propagation of sound waves. 
It is shown in this paper that the generation and propagation of waves on a 
shallow layer of water is governed by a two-dimensional wave equation similar 
to Lighthill’s and that, in many respects, these waves behave like sound waves. 
This similarity enables sound waves t o  be simulated and visualized in the labora- 
tory. The ability to see the waves makes it possible to study their development 
and interactions in detail, a study which would be extremely difficult with aerial 
sound waves. Furthermore, since the propagation speed of water waves is small, 
high Mach number situations can be examined easily. 

Gravity waves on a finite depth of water are dispersive and cannot in general 
provide a very good model for sound waves, which are non-dispersive. However, 
at  a particular mean depth (0.5cm), surface tension effects render the water 
layer practically non-dispersive, thus minimizing this difficulty. Indeed waves 
on a shallow water layer are an excellent simulation of two-dimensional aerial 
waves, and they also share many outstanding features in common with three- 
dimensional waves. The similarity is brought out in detail in the following analysis 
which considers turbulence as a source of shallow water waves. The philosophy 
underlying the derivation of the equations is the same as that used in the sound 
theory (Lighthill 1952). The waves are regarded as a by-product of a more com- 
plicated flow, and the problem is t o  estimate the waves generated by it. The flow 
is assumed to be known, and acts as a source of waves which radiate into the 
undisturbed water. From this point of view, the resultant forced wave equation, 
although rather artificially manufactured, is a correct description of the field. 

The general solution of the shallow water equation demonstrates that  water 
and sound waves are alike in that both are generated by the same distribution of 
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sources, and that at  large distances from the sources both are waves of constant 
profile radiating out at  the constant wave speed. Of course, to be energy con- 
serving in two dimensions, the amplitude of the water waves falls off only as the 
square root of the radiation distance, but this difference is minor. A more im- 
portant difference is that the water wave amplitude depends upon a time 
integral of the source strength, a result not found in three dimensions. Conse- 
quently, th i s  amplitude has a dimensional dependence different from that of 
sound waves. 

The shallow water equations are derived and written as an inhomogeneous 
wave equation in $2.  In $3, this equation is solved in the sense of Curle (1955). 
That is, the radiation field is given explicitly in terms of a known distribution of 
surface quadrupoles and a line distribution of dipoles, whose strength involves 
the field quantity. The quadrupole terms are regarded as specified in a moving 
reference frame in $4. The convective effects are described and the lack of a 
distinct singularity at the Mach wave condition is accounted for as being an essen- 
tial difference between the two- and three-dimensional theories. The paper is 
concluded with a brief summary of the similarities that exist between aerial 
sound waves and shallow water waves and discusses the possibility for effective 
similation of aerodynamically generated sound on a shallow water table. 

2. Equations of motion 
Before the equations of motion can be derived, we must demonstrate that a 

particular depth exists at which surface tension effects render the water layer a 
practically non-dispersive medium. To do this, we examine the formula for the 
wave speed c of small amplitude waves of wave-number k. This is given by Milne- 
Thomson (1960, p. 409) in the form 

c2 = -+- tanh kh,, (: 3 
pw is the density of the water, S the surface tension coefficient, and h, the mean 
depth. For small kh,, this formula can be expanded in a rapidly converging power 
series, 

In  the absence of surface tension, the variation of c2 from its zero wave-number 
value gh, is of order but with surface tension, h, can be chosen so that 

is zero, leaving an error of order (kh0)4. For this critical depth, the wave speed is 
constant for all but the shortest waves, and a wave equation with constant c 
correctly describes the motion. For water a t  room temperature this critical depth 
is 0.48 em, and d l  references to shalIow water refer to this depth. 

The appropriate form of the equations of motion are derived by integrating 
the usual equations vertically through the water layer, whose variable depth is 
denoted by h. The water is assumed to be inviscid. The subscripts a, p, y range 
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over the values 1 , 2  (the two horizontal directions), and repeated subscripts imply 
a tensor summation over these values. Small letters denote quantities a t  a point, 
whereas capital letbers denote the average value through the depth, e.g. the 
average velocity U, is 

u,= - UadX3.  (2.3) ;I: 
Consider first the integrated continuity equation 

or 

as [u~],,=~ is zero. [ZC,]~, ,~ is the particle velocity a t  the surface, so that it is equal 

ah ah to [Dh/DtI,,,rL, or 
(2 .5 )  [%L,=h = at +ax, [UzIx,=h. 

These equations combine to give the mean form of the continuity equation, 

ah a 
- +-(hU,) = 0. at ax, 

We similarly integrate the a-component of the momentum equation 

which leads to the result, 

a a 
- (hU,) +- (hU,Up) = - 
at ax, 

(2 .7 )  

hU, U, has been written for 
u , u p d x 3 ,  

although notationally this is not strictly consistent. The vertical momentum 
equation is used to  eliminate the pressure from (2.7). As 

1 aP *3 

Dt Pw ax, 
= -g - - - ,  

then (2.8) 

where ps is the pressure in the water just below the surface, which, owing to the 
surface tension, differs from the atmospheric pressure pa.  This difference is given 
by the Laplace formula, and for surfaces which deviate only slightly from a plane 
(ie. the amplitude of the disphcement is small compared with the horizontal 
length scale), can be written (Landau & Lifshitz 1959, p. 233) 

a2h 
pa-ps  = 8- ax:. (2.9) 
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Substitution of (2.8) and (2.9) into (2.7) gives 
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which gives the momentum equation in the form 

Equations (2.6) and (2.12) are the required shallow water equations. The term 
hU, can be eliminated by cross-differentiation, and after some rearrangement, 

(2.13) 

where 

This equation is the two-dimensional inhomogeneous wave equation, and governs 
the generation and propagation of shallow water waves. It can be shown that at  
points in the wave field (for which the wave speed is (gh,):) Tap is zero to second 
order in the wave amplitude provided that the non-dispersive depth is chosen. 
Then the linear terms in B and (Sip,) h(a2h/ax:) exactly cancel. Also, in a region 
of convected turbulence, an order of magnitude analysis shows that the dominant 
term of Tap is hUa Up. The form of the shallow water equations, and these results 
about Taj, show a remarkable similarity to Lighthill’s theory of sound, a simi- 
larity which might be exploited by modelling certain aerodynamic problems on 
a shallow layer of water. Accordingly, in the next section we seek a solution of 
(2.13) in exactly the same sense that the Lighthill-Curle (1955) equations repre- 
sent a solution to  the aerodynamic problem. 

3. General theory 

1963), the equations of motion of a compressible gas are written in the form 
In  the theory of aerodynamic sound developed by Lighthill (1952,1954,1962, 

a.Q a 
- + - ( p i )  = 0, at axi 

a a 
- (puJ + - (puiuf +Pij) = 0. 
at ax, (3.2) 

p is the density, ui the velocity component in the xi direction, pii the compressive 
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stress tensor, and the subscripts i, j ,  range over the values 1, 2 and 3. Lighthill 
combined these equations to yield the three-dimensional inhomogeneous wave 
equation, 

where 
(3.3) 

and a, is the speed of sound in the gas at rest. This equation governs the generation 
and propagation of sound waves; it shows how the sound is equivalent to that 
generated by a volume distribution of quadrupoles of strength density Tij. The 
influence of solid boundaries upon the sound was investigated by Curle (1955)) 
who used the standard Kirchhoff solution of equation (3.3) to show how surface 
stresses are acoustically equivalent to a surface distribution of acoustic dipoles. 
Although Curle’s result was only derived for finite surfaces, its more general 
validity is easily established. 

The situation for shallow water is very similar. We have already seen how the 
equations of motion can be written in the form 

ah a 
- +- (hU,) = 0, 
at ax, 

which lead to the wave equation 

(3-4) 

where c2 = gh,. To solve this equation, we observe that Lighthill’s (1952) equa- 
tion (3.3) reduces to it if p and !& are independent of the co-ordinate x3. Curle’s 
general solution of equation (3.3) expresses p in terms of volume and surface 
integrals of Tii and p i j .  Consequently, for p to be independent of x3, T,,, pij ,  and 
the geometrical situation, must all be independent of x3. We conclude that 
solutions of (3.6), in the presence of a contour I?, are identical to the solutions of 
(3.3) in the presence of a cylinder S erected on I?, and in which Cj and pii do not 
depend on x3. In  this situation, if V denotes the volume exterior to 8, then 
Curle’s solution becomes 

R is the distance of the field point x from the source point y and is given by 

R2 = (XI - yJ2 + ( ~ 2  - ~ 2 ) ~  + ~ i .  (3.8) 

The square brackets imply the integrand is t o  be evaluated at the retarded time 
t ‘  = t - (R/c). P, is written for l,Pa,, I ,  being the direction cosines of the normal 
to I’ (and 8). 

As the only dependence of the integrands upon y3 is through the retarded time, 
the y3 integration is effectively a time integration. Accordingly, y3 is replaced 
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by t‘ as the independent variable, and (3.7) becomes 
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Here r is the two-dimensional radiation distance, given by 

r2 = (x1- Y1)2 + (x2 - YA2, (3.10) 

and dA, d r  are two-dimensional area and line elements respectively. The con- 
tour integral is taken around I?, and the area integral over the area external to 1‘. 
This form of the solution has the advantage that no reference is made to the 
three-dimensional model used to generate it. This result can also be obtained from 
Volterra’s solution of equation (3.6) (see Jones 1964, p. 42), but the given deriva- 
tion is more straightforward. 

Equation (3.9) is the fundamental result of the theory. It is an expression for 
the depth in terms of the known quantities Tap and Pa, for any arbitrary fluid 
motion about a static solid surface. From the form of this equation, it follows that 
the waves are the same as those produced by quadrupole sources of strength 
density Tap, distributed over the region external to I’ plus dipole sources of 
strength Pa distributed around 1‘. This equation also shows that the waves in- 
duced at  any field point not only depend on the strength of the sources at  a time 
r/c  earlier, but on all previous times as well. On the other hand, the presence of the 
square root factor weights each contribution differently, and, since it is singular 
at  t’ = t - r / c ,  the main contribution comes from that region. In  the far field, 
near these values oft’, the square root can be approximated by {2r(ct - ct’ - r)>-S, 
and the time integral consequently yields an expression of the form r-*F(t - r / c ) .  
This implies that in the far field the waves from each source are waves of constant 
profile travelling at speed c, and whose amplitude falls off like r-4. This type of 
behaviour is also found in linear theory for the conical wave field about a super- 
sonic projectile (Whitham 1950). It is clearly so for sources of an oscillatory 
nature, where the method of stationary phase furnishes a precise form for P. 
We conclude that in the far field, water waves behave very similarly to sound 
waves, being produced by a similar distribution of dipoles and quadrupoles, and 
propagating in the same manner. 

The result that the depth depends upon a time integral of Tab or Pa merits 
further comment. It suggests that in any analysis featuring order of magnitude 
estimations, a typical time will be included. This does not usually happen in the 
three-dimensional theory. The typical time often varies with the parameters of 
the situation, and will result in a parametric dependence different from that ob- 
tained in three dimensions. Thus, some results of aerodynamic sound theory 
cannot be taken over directly to shallow water theory, but must be reconsidered 
in the light of (3.9). To illustrate this, the two-dimensional waves generated by a 
region of turbulence are examined in the next section. The corresponding three- 
dimensional theory is well known, being the basis of jet noise theory, so compari- 
sons are easily made. 



Shallow water wave generation by unsteady $ow 7 85 

4. Two -dimensional waves generated by convected turbulence 
Before the two-dimensional theory of waves produced by convected turbulence 

is developed, it is worthwhile briefly discussing the three-dimensional theory. This 
has been developed by Lighthill (1952, 1954, 1962, 1963) and Ffowcs Williams 
(1963). The latter considered the problem of a jet aircraft flying at  a Mach 
number N ,  emitting a turbulent exhaust whose eddies move at  Mach number 
He found that the mean square density fluctuation observed in the far field 
varies as 

(4.1) 

R, is the mean distance from the observer to the turbulence, 1 is the typical tur- 
bulence length scale, and 8, $ are angles specifying the direction of the convective 
motion. Along the lines (1 -1Mcos8) = 0, where the above result is not valid, a 
separate analysis gave the variation as 

- 12 
(p  -pop - pZ1 M7(M + N)I 1 + N cos $ 1  11 - Mcos 81-5. 

RO 

(4.2) 

By assuming a particular form for the unknown correlation function which arose 
in his integral, Ffowcs Williams was able to evaluate it exactly, and deduced that 
for all M ,  the density fluctuation varies as 

b being a small numerical constant. However, the general validity of (4.3) is not 
easily established, requiring detailed appeal t o  the theory of generalized fuiic- 
tions. Nevertheless, a two-dimensional result similar to (4.3) can be obtained 
from Ffowcs Williams’s equations, without recourse to such methods. 

In  deriving this two-dimensional result, the following convention is adopted. 
Vectors denoted by capital letters are three-dimensional vectors, whereas small 
letters denote vectors in the two-dimensional plane X ,  = 0. k denotes the unit 
vector normal to this plane. In  his three-dimensional theory, Ffowcs Williams 
considers a region of turbulence which convects through space at  avelocity - a, N, 
and which is composed of eddies travelling at a velocity +aoM.  His equation 
(1.29) shows that the leading term of the mean square density fluctuation ob- 
served in the far field is given by the expression 

64 
X = ~ ~ ~ < ~ ( R , A , ~ )  d V ( H )  clV(A). (4.4) 

F& is the covariance of the stress tensor Tii, Y is defined by the equation 

Y = W - a , N t + N ( X - Y ( ,  (4.5) 

and the two volume integrals are to be taken over the turbulent region. The 
retarded time 7 is defined in terms of the other variables, and will be discussed at  
a later stage. 

50 Fluid IIech. 31 
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To obtain the two-dimensional result, this expression is applied to the situation 
in which there is no variation of the strength and geometry of the sources with 
X,, and in which the vectors N and M are two-dimensional vectors n and m. 
This use of the leading term of the three-dimensional expression to furnish the far 
field expression in two dimensions is valid as long as the predicted result is not 
zero. Because of the symmetry about the plane X ,  = 0, each volume integral is 
calculated over half the space, and the answer doubled. By introducing the sim- 
plifying notation R = (X-Y), r = (x-y), R = \RI and Y = \rl (consequently 
R = r + kH, and R2 = r2 + 23;) expression (4.4) becomes in shallow water 
terminology 

x dA(q)dA(A)dH,dA,, (4.6) 

the range of integration for H ,  and A, is (0, 00). 

The expression for the retarded time 7,  given by Ffowcs Williams in his equa- 
tion (1.29)) was derived on the assumption that the eddy size was small compared 
with the radiation distance. Clearly, this approximation is not valid in the two- 
dimensional situation, where the eddies are infinite cylinders. In  this case, the 
exact expression for 7 (given in his equation (1.12)) can be approximated by 

X .r + h(23: - A:) 
7= clR-m.rl . (4.7) 

This expression is valid for all values of H ,  and A,. The integrand only depends 
on A3 through 7 ,  and consequently the A, integral is effectively an integration 
over 7. Thus A, is replaced by 7 as the independent variable, and expression (4.6) 
becomes, 

dA (YJ ) dA (A) dH,  d7 
X {H;  - ~ [ c T ~ R  - m. rl -A. r])b' (4.8) 

The 7 integral goes from - co up to the zero of the square root. 
A turbulent eddy is typically of spatial dimension 1 and life-time Zlbcm, where 

m = ImJ and b is a small numerical factor. As the covariance Paprs(~,A,7) is 
negligible unless X and 7 are within these ranges, the introduction of the scaled 
variables 

A bcm 
1 I p = -  and T = - 7  (4.9) 

reveals the dependence of the integral upon these scales. Furthermore, because 
this scaling places the significant values of Paay8(q, A, 7) within constant and equal 
ranges of p and T ,  the transformed function P&,,(YJ, p, T )  does not retain any 
major distinction between the new axes. Consequently, it is possible to rotate 
these axes without complicating the task of estimating the magnitude of 
PkaY8(q, p, T ) ,  and this freedom to rotate axes allows the integral to be further 
simplified. The zero of the square root defines a plane in the (p, T) space, and the 
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integration is to be carried out over the volume on one side of it. The rotated 
axes are chosen to be the normal to this plane, and any two axes parallel to it. 
The equation of the plane, in normal form, is 

bmHg 
21 ' 

f - l l  R - m . rlT -f-lbmp. r = f-'__ (4.10) 

where f is the normalizing factor {I R - m . r I + b2m2r2}*. If the new axes are 
denoted by 6, l&, 6; 

(4.11) 

being the normal axis, then c3 is given by 

Q = f l I R  - m. rlT -f-lbmp.r. 

The derivatives are related by 

(4.12) 

ul, a2 being factors determined by the particular choice of Cl and c2. Knowledge 
of these is not necessary, since they vanish after integration over Cl and c2. 
Equation (4.8) reduces to the simpler form, 

For values of H3 such that H i  $ Blj'/bm, the square root in the denominator 
can be approximated by H3. These values of H3 contribute nothing to the in- 
tegral, since after this approximation, the Q integral goes to zero. We conclude 
that only values of H3 such that H i  N 2i#bm contribute to the integral. For large 
values of r,  this contribution range only increases as (Zr)*, and as R2 = r2+ HZ, it 
follows that R can be approximated by r in the far field. If H3 is scaled by the 
factor 2Vlfglbm to standardize its contribution range, then (4.13) becomes 

The parametric variation of (h - h,)2 quickly follows from this equation. As 
P&8(q,Z;) is a mean square of the tensor Tap, it  varies as h2c4m4. The q area 
integral yields a typical source area, which varies as Z2([m + n]/m). If m . r and 
n . r are written as mr cos 6' and nr cos @ respectively, then the two-dimensional 
result equivalent to (4.3) is 

(h  - hJ2 N hz -! mO(m + n)( 1 + n cos 41 (( 1 - m cos 6')2+ b2m2)-2. (4.15) 
YO 

This result differs from the three-dimensional result (4.3) in two respects. 
First, the inverse square law of sound intensity is replaced by a first power law, 
as is to be expected upon considerations of energy. Secondly, the 'Lighthill 
eighth power law' is here replaced by a seventh power law,t coupled with a corre- 
sponding change in the directional factor. This is entirely due to the infinite 

t Note added in proof. This result has also been found by Obermeier (1967) in his study 
of two-dimensional asrodynamic sound. 

50-2 
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length of the eddies, which makes retarded time differences crucial in determining 
the effective volume of each eddy. This contrasts with the sound theory, where 
such time differences are usually unimportant in this respect. 

5. Conclusion 
The main conclusion to be drawn from this analysis is that qualitatively, 

water waves behave in a very similar manner to sound waves. Both radiate out 
from their sources at  a constant speed, preserving their profile in the far field. 
Furthermore, they are generated by the same equivalent system of dipoles and 
quadrupoles. As a consequence of this, for both types of waves, a region of tur- 
bulence generates a directional field, whose intensity varies as a high power of the 
eddy convective speed. The analysis shows that quantitative results are slightly 
different for the shallow water waves, the intensity increasing with the seventh 
power of flow velocity and the fourth power of the Doppler factor (1 - m cos O)-l. 
Though a peak is found at the Mach wave condition, no singularity is evident, 
even in the first approximation which is then valid at  all speeds. The similarity 
of this result with recent developments in the theory of aerodynamic sound 
generation leads to the possibility that turbulence generated shallow water 
waves can form a satisfactory and easily visualized simulation of aerodynamic 
noise problems of a rather intractible kind. Indeed some experiments have 
already been attempted and the qualitative similarity with the aerodynamic 
problem is very evident. That there should also be a means of making the simi- 
larity quantitative is the main outcome of this work, though it should be empha- 
sized that certain properties of the two-dimensional wave field distort any 
complete analogy with the three-dimensional problem. 

This work was carried out as part of a study of diffraction effects on sound of 
aerodynamic origin, supported by the Ministry of Aviation under agreement no. 
PD/37/065/ADM. One of us, D.L.H., was supported by an S.R.C. Research 
Studentship. 

REFERENCES 

CURLE, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. Roy.  

FFOWCS WILLIAMS, J. E. 1963 The noise from turbulence convected a t  high speed. 
Phil. Trans.  A 255, 469-503. 

JONES, D. S. 1964 T h e  Theory of Electromagnetism. London: Pergamon Press. 
LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics. London: Pergamon Press, 
LIGHTHILL, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. 

Roy. Soc. A 211, 564-87. 
LIGHTHILL, M. J. 1954 On sound generated aerodynamically. 11. Turbulence as a source 

of sound. Proc. Roy.  SOC. A 222, 1-32. 
LIGHTHILL, M. J. 1962 Sound generated aerodynamically. Proc. Roy. SOC. A 267, 147-82. 
LIGHTHILL, M. J. 1963 Je t  noise. A.I.A.A. J .  1, 1507-17. 
MILNE-THOMSON, L. M. 1960 Theoretical Hydrodynamics, 4th ed. London : Macmillan 
OBERMEIER, F. 1967 Acoustica, 18, 4 
WHITHAM, G. B. 1950 The behaviour of supersonic flow- past a body of revolution, far 

SOC. A 231, 505-14. 

from the axis. Proc. ROT!. SOC. A 201, 89-109. 


